II B.Tech - II Semester – Regular Examinations – MAY 2023

COMPUTATIONAL THINKING (MINORS in COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks	
		UNIT-I				
1	a)	Distinguish between all loop statements	L2	CO1	6 M	
		along with a flowchart and with an example				
		program.				
	b)	Develop an algorithm for exchanging the	L3	CO2	8 M	
		values of two variables without using the				
		third variables.				
OR						
2	a)	Define Pattern Recognition. Develop an	L3	CO2	8 M	
		algorithm to find out the factorial of a given				
		number.				
	b)	Explain the following with an example.	L3	CO2	6 M	
		i) Data Representation and Abstraction				
		ii) Algorithm Design				

		UNIT-II					
3	a)	Construct an algorithm to print prime	L2	CO1	8 M		
		numbers up to a given number 'n'.					
	b)	Explain in detail, the sequence of steps to be	L3	CO2	6 M		
		followed in writing an algorithm for finding					
		the sum of first 'N' natural numbers.					
		Hint: Sum of First 'N' natural numbers =					
		N(N+1) / 2					
		OR					
4	a)	Draw a flow chart to find out GCD of three	L2	CO1	6 M		
		numbers.					
	b)	Develop an algorithm and draw flowchart	L3	CO2	8 M		
		for finding the n th number in a Fibonacci					
		sequence.					
5		UNIT-III Write on electrithm to find out removel of	10	CO1	7 M		
5	a)	Write an algorithm to find out removal of	L2	COI	7 M		
	1.)	duplicates from an ordered array.	1.2	<u> </u>	7 14		
	b)	Draw a flow chart to check whether given	L3	003	7 M		
		elements in an array are distinct or not.					
			10	<u>CO1</u>	7.14		
6	a)	Write an algorithm to find out an array order	L2	CO1	7 M		
	1.)	reversal with an example.	1.2	<u> </u>	7 14		
	b)	Develop an algorithm for finding the	L3	CO3	7 M		
		maximum number of an array elements.					
UNIT-IV							
7	a)	Apply Linear search on {22, 11, 66, 44, 99,	L4	CO4	8 M		
		55, 88}.					

	<u> </u>		-		
	b)	Devise an algorithm for selection sort and	L2	CO1	6 M
		explain with an illustration.			
		OR			
8	a)	Illustrate the linear search and binary search	L4	CO4	6 M
		algorithms with an example.			
	b)	Explain insertion sort in detail on	L4	CO4	8 M
		{24,12,11,76,39,12,67,34,88,91,26,45,78}.			
0		UNIT-V	10	001	0.14
9	a)	Write a short note on the following.	L2	CO1	8 M
		i) Keyword searching in text			
		ii) Text line editing			
	b)	Use the linear pattern text search algorithm	L4	CO4	6 M
		to search for the term FANCY in the text			
		string "FANCIFUL FANNY FRUIT			
		FILLED MY FANCY".			
		i) Show all of the steps and explain			
		each of the required character			
		shifts.			
		ii) How many character comparisons			
		are required to obtain a match?			
	T	OR			
10	Exp	plain the following with an example.	L3	CO3	14 M
	i) I	Linear pattern search			
	ii) S	Sub linear pattern search			
L					